Kth Largest Element in an Array

HeapQuick Select
https://www.leetcode.com/problems/kth-largest-element-in-an-array

# Solution

Let nn be the length of the array.

# 1-liner Cheating

Use sorted:

def findKthLargest(self, nums: List[int], k: int) -> int:
    n = len(nums)
    return sorted(nums)[n-k]
1
2
3

Or use built-in heapq:

def findKthLargest(self, nums: List[int], k: int) -> int:
    return heapq.nlargest(k, nums)[-1]
1
2

# Heap

Why does heappop work?

Because after iterating through all elements, the heap maintains exactly k elements. Since it's a min-heap, the smallest element in the heap is the k-th largest element in the original array.

Complexity

time: O(n)O(n)
space: O(k)O(k)

from heapq import heappush
def findKthLargest(self, nums: List[int], k: int) -> int:
    n = len(nums)
    heap = []
    for i in range(n):
        heappush(heap, nums[i])
        if len(heap) > k:
            heappop(heap)
    return heappop(heap)
1
2
3
4
5
6
7
8
9

# Quick Select

Complexity

time: O(n)O(n) (worst case: O(n2)O(n^2))
space: O(n)O(n)

# Lomuto Partition

def findKthLargest(self, nums: List[int], k: int) -> int:

    def partition(arr, left, right):
        # move pivot to the end
        pivot = arr[right]
        store_idx = left
        for i in range(left, right):
            # move elt smaller than pivot to the left
            if arr[i] < pivot:
                arr[store_idx], arr[i] = arr[i], arr[store_idx]
                store_idx += 1

        arr[store_idx], arr[right] = arr[right], arr[store_idx]
        return store_idx

    def quickSelect(arr, left, right, k):
        if left == right:
            return arr[left]
        pivot_idx = partition(arr, left, right)
        if k == pivot_idx:
            return arr[k]
        if k < pivot_idx:
            return quickSelect(arr, left, pivot_idx-1, k)
        else:
            return quickSelect(arr, pivot_idx+1, right, k)

    n = len(nums)
    return quickSelect(nums, 0, n-1, n-k)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

# Hoare Partition

def findKthLargest(self, nums: List[int], k: int) -> int:

    def partition(arr, left, right):
        pivot = arr[right]
        i, j = left, right
        while True:
            while arr[i] < pivot:
                i += 1
            while j > 0 and arr[j] >= pivot:
                j -= 1

            # if two pointers meet
            if i >= j:
                break
            else:
                arr[i], arr[j] = arr[j], arr[i]
        arr[i], arr[right] = arr[right], arr[i]
        return i

    def quickSelect(arr, left, right, k):
        if left == right:
            return arr[left]
        pivot_idx = partition(arr, left, right)
        if k == pivot_idx:
            return arr[k]
        if k < pivot_idx:
            return quickSelect(arr, left, pivot_idx-1, k)
        else:
            return quickSelect(arr, pivot_idx+1, right, k)

    n = len(nums)
    return quickSelect(nums, 0, n-1, n-k)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32