x to the n

MathBinary SearchD&C
https://leetcode.com/problems/powx-n

# Solution

Calculate pow(a,n), or ana^n. Could do in both recursion and iteration.

# Recursion

Complexity

time: O(logn)O(\log n)
space: O(logn)O(\log n)

The following solution actually TLS b/c of highlighted lines, specifically on the following test case:

x = 0.00001
n = 2147483647
1
2




 
 



def myPow(self, x: float, n: int) -> float:
    if n == 0:
        return 1.0
    elif n < 0:
        return 1 / self.myPow(x, -n)
    elif n % 2:
        return self.myPow(x, n//2) * self.myPow(x, n//2) * x
    return self.myPow(x, n//2) * self.myPow(x, n//2)
1
2
3
4
5
6
7
8

Works after combining duplicate myPow calls:

def myPow(self, x: float, n: int) -> float:
    if n == 0:
        return 1
    elif n < 0:
        return 1 / self.myPow(x, -n)
    elif n % 2:
        return x * self.myPow(x, n-1)
    return self.myPow(x*x, n//2)
1
2
3
4
5
6
7
8

Or could store the common half:

def myPow(self, a, b):
    if b == 0:
        return 1
    if b < 0:
        return 1.0 / self.myPow(a, -b)
    half = self.myPow(a, b // 2)
    if b % 2 == 0:
        return half * half
    else:
        return half * half * a
1
2
3
4
5
6
7
8
9
10

# Iteration

Complexity

time: O(logn)O(\log n)
space: O(1)O(1)

def myPow(self, x: float, n: int) -> float:
    if n == 0:
        return 1
    elif n < 0:
        n = -n
        x = 1/x
    res = 1
    prod = x
    is_pos = n > 0
    while n > 0:
        if n % 2:
            res = prod * res
        prod *= prod
        n //= 2
    return res
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

# Follow Up

In this similar LintCode problem (opens new window), the modular arithmetic is now added. That is, calculate pow(a,n,b), or anmodba^n \mod b.

The corresponding complexities of recursion or iteration are the same.

# Recursion

Highlighted lines fix the n == 0, b == 1 case such as 3**0 % 1:


 
 









def fastPower(self, a, b, n):
    if b == 1:
        return 0
    if n == 0:
        return 1
    # last 4 lines could also be:
    # if n == 0:
    #     return 1 % b
    if n % 2:
        return a * self.fastPower(a, b, n-1) % b
    return self.fastPower(a, b, n//2)**2 % b
1
2
3
4
5
6
7
8
9
10
11

# Iteration

def fastPower(self, a, b, n):
    if b == 1:
        return 0
    res = 1
    while n > 0:
        if n % 2:
            res = res * a % b
            n -= 1
        else:
            a = a * a % b
            n //= 2
    return res % b
1
2
3
4
5
6
7
8
9
10
11
12