x to the n
franklinqin0 MathBinary SearchD&C
# Solution
Calculate pow(a,n)
, or . Could do in both recursion and iteration.
# Recursion
Complexity
time:
space:
The following solution actually TLS b/c of highlighted lines, specifically on the following test case:
x = 0.00001
n = 2147483647
1
2
2
def myPow(self, x: float, n: int) -> float:
if n == 0:
return 1.0
elif n < 0:
return 1 / self.myPow(x, -n)
elif n % 2:
return self.myPow(x, n//2) * self.myPow(x, n//2) * x
return self.myPow(x, n//2) * self.myPow(x, n//2)
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
Works after combining duplicate myPow
calls:
def myPow(self, x: float, n: int) -> float:
if n == 0:
return 1
elif n < 0:
return 1 / self.myPow(x, -n)
elif n % 2:
return x * self.myPow(x, n-1)
return self.myPow(x*x, n//2)
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
Or could store the common half
:
def myPow(self, a, b):
if b == 0:
return 1
if b < 0:
return 1.0 / self.myPow(a, -b)
half = self.myPow(a, b // 2)
if b % 2 == 0:
return half * half
else:
return half * half * a
1
2
3
4
5
6
7
8
9
10
2
3
4
5
6
7
8
9
10
# Iteration
Complexity
time:
space:
def myPow(self, x: float, n: int) -> float:
if n == 0:
return 1
elif n < 0:
n = -n
x = 1/x
res = 1
prod = x
is_pos = n > 0
while n > 0:
if n % 2:
res = prod * res
prod *= prod
n //= 2
return res
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Follow Up
In this similar LintCode problem (opens new window), the modular arithmetic is now added. That is, calculate pow(a,n,b)
, or .
The corresponding complexities of recursion or iteration are the same.
# Recursion
Highlighted lines fix the n == 0
, b == 1
case such as 3**0 % 1
:
def fastPower(self, a, b, n):
if b == 1:
return 0
if n == 0:
return 1
# last 4 lines could also be:
# if n == 0:
# return 1 % b
if n % 2:
return a * self.fastPower(a, b, n-1) % b
return self.fastPower(a, b, n//2)**2 % b
1
2
3
4
5
6
7
8
9
10
11
2
3
4
5
6
7
8
9
10
11
# Iteration
def fastPower(self, a, b, n):
if b == 1:
return 0
res = 1
while n > 0:
if n % 2:
res = res * a % b
n -= 1
else:
a = a * a % b
n //= 2
return res % b
1
2
3
4
5
6
7
8
9
10
11
12
2
3
4
5
6
7
8
9
10
11
12