Sqrt(x)

MathBinary Search
https://leetcode.com/problems/sqrtx

# Solution

There are so many of them! Thanks to this question that I review Newton's method in Calculus.

Binary search may be easiest to write in an interview.

# Pocket Calculator Algorithm

Based on the formula (hard to come up with if haven't seen before):

x=e12logx\sqrt{x} = e^{\frac{1}{2}\log x}

Complexity

time: O(1)O(1)
space: O(1)O(1)

from math import e, log
def mySqrt(self, x):
    if x < 2:
        return x

    left = int(e**(0.5 * log(x)))
    right = left + 1
    return left if right * right > x else right
1
2
3
4
5
6
7
8

If x<2x < 2, return xx.

For x2x \ge 2, x\sqrt{x} is always smaller than x2\frac{x}{2} and larger than 0: 0<a<x20 < a < \frac{x}{2}.

Complexity

time: O(logN)O(\log N)
space: O(1)O(1)

def mySqrt(self, x: int) -> int:
    if x < 2:
        return x
    left = 2
    right = x // 2

    # binary search
    while left <= right:
        mid = left + (right - left) // 2
        num = mid * mid
        if num <= x:
            left = mid + 1
        else:
            right = mid - 1
        
    return right
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

# Recursion + Bit Shifts

Because x=2×x4\sqrt{x} = 2 \times \sqrt{\frac{x}{4}}, we can do a recursion:

mySqrt(x)=2×mySqrt(x4)mySqrt(x) = 2 \times mySqrt(\frac{x}{4})

Could continue to optimize by bit shifts:

mySqrt(x)=mySqrt(x>>2)<<1mySqrt(x)=mySqrt(x> >2)< <1
def mySqrt(self, x):
    if x < 2:
        return x

    left = self.mySqrt(x >> 2) << 1
    right = left + 1
    return left if right * right > x else right
1
2
3
4
5
6
7

# Newton's Method

Newton's method (opens new window) gives the best runtime asymptotically:

The math is deduced below:

xn+1=xnf(xn)f(xn)=xnxn2a2xn=12(xn+axn)x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{2}-a}{2 x_{n}}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)

The following 3 solutions all use Newton's method in different forms.

# initialize sqrt to x//2

Given the fact in binary search, return x if x < 2; otherwise, x//2 is an upper bound for intx\texttt{int} \sqrt{x} and the in the while loop sqrt monotonically decreases in every iteration.

    def mySqrt(self, x: int) -> int:
        if (x<2): return x
        sqrt = x//2
        while not (sqrt*sqrt<=x and (sqrt+1)**2>x):
            sqrt = (sqrt + x//sqrt)//2
        return sqrt
1
2
3
4
5
6

# initialize sqrt to x

In the while loop, sqrt monotonically decreases in every iteration.

    def mySqrt(self, x: int) -> int:
        sqrt = x
        while sqrt**2>x:
            sqrt = (sqrt + x//sqrt)//2
        return sqrt
1
2
3
4
5

# initialize y & z

The proof is sinuous and runtime is slower than the previous two solutions.

    def mySqrt(self, x: int) -> int:
        y = 1
        z = x
        while z > y:
            z = (z+y)//2
            y = x//z
        return z
1
2
3
4
5
6
7

# Fast Approximations for Floating Sqrt

According to this video (opens new window), the floating sqrt can be approximated by the following methods.

# Continued Fraction

First approximate xx as a2+ba^2 + b, where a2ba^2 \gg b. Then:

x=a+b2a+b2a+b2a+x = a + \frac{b}{2a + \frac{b}{2a + \frac{b}{2a + \cdots}}}

# Proof

s=a2+bsa2=b(s+a)(sa)=bsa=bs+as=a+ba+srecursively plug in ss=a+ba+a+ba+s=a+b2a+ba+s \begin{aligned} s &= a^2 + b \\ s - a^2 &= b \\ (\sqrt{s} + a)(\sqrt{s} - a) &= b \\ \sqrt{s} - a &= \frac{b}{\sqrt{s} + a} \\ \sqrt{s} &= a + \frac{b}{a + \sqrt{s}} \\ \text{recursively plug in } s \rightarrow \sqrt{s} &= a + \frac{b}{a + a + \frac{b}{a + \sqrt{s}}} = a + \frac{b}{2a + \frac{b}{a + \sqrt{s}}} \end{aligned}

# Long Division

Starting from 4:50 (opens new window), the method is presented.